Superlattice assembly of graphene oxide (GO) and titania nanosheets: fabrication, in situ photocatalytic reduction of GO and highly improved carrier transport.
نویسندگان
چکیده
Two different kinds of two-dimensional (2D) materials, graphene oxide (GO) and titanium oxide nanosheets (Ti₀.₈₇O2(0.52-)), were self-assembled layer-by-layer using a polycation as a linker into a superlattice film. Successful construction of an alternate molecular assembly was confirmed by atomic force microscopy and UV-visible absorption spectroscopy as well as X-ray diffraction analysis. Exposure of the resulting film to UV light effectively promoted photocatalytic reduction of GO as well as decomposition of the polycation, which are due to their intimate molecular-level contact. The reduction completed within 3 hours, bringing about a decrease of the sheet resistance by ∼10(6). This process provides a clean and mild route to reduced graphene oxide (rGO), showing advantages over other chemical and thermal reduction processes. A field-effect-transistor device was fabricated using the resulting superlattice assembly of rGO/Ti₀.₈₇O₂(0.52-) as a channel material. The rGO in the film was found to work as a unipolar n-type conductor, which is in contrast to ambipolar or unipolar p-type behavior mostly reported for rGO films. This unique property may be associated with the electron doping effect from Ti₀.₈₇O₂(0.52-) nanosheets. A significant improvement in the conductance and electron carrier mobility by more than one order of magnitude was revealed, which may be accounted for by the heteroassembly with Ti₀.₈₇(0.52-) nanosheets with a high dielectric constant as well as the better 2D structure of rGO produced via the soft photocatalytic reduction.
منابع مشابه
Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملEffect of Asymmetric Functionalized Graphene Oxide (Janus GO) on Young′s Modulus and Glass Transition Temperature of PSf Ultrafiltration Membrane
In this study, effect of asymmetric functionalized graphene oxide (Janus GO) on Young′s modulus and glass transition temperature of Polysulfone (PSf) ultrafiltration membranes was investigated. The membranes were prepared via phase inversion method and GO nanosheets were dispersed in casting solution by sonication. Results showed that the Normalized Young’s modulus (on the basis of neat ...
متن کاملFabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique
Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...
متن کاملTreatment of dairy wastewater by graphene oxide nanoadsorbent and sludge separation, using In Situ Sludge Magnetic Impregnation (ISSMI)
The present research investigates the ability of graphene oxide nanosheets for treatment of dairy wastewater, using In Situ Sludge Magnetic Impregnation” (ISSMI) to separate sludge after adsorption process. To increase the interaction between magnetic nanoparticles and graphene oxide, the former has been functionalized, using 3-Aminopropyl triethoxysilane, with the synthesized graphene oxide an...
متن کاملTreatment of dairy wastewater by graphene oxide nanoadsorbent and sludge separation, using In Situ Sludge Magnetic Impregnation (ISSMI)
The present research investigates the ability of graphene oxide nanosheets for treatment of dairy wastewater, using In Situ Sludge Magnetic Impregnation” (ISSMI) to separate sludge after adsorption process. To increase the interaction between magnetic nanoparticles and graphene oxide, the former has been functionalized, using 3-Aminopropyl triethoxysilane, with the synthesized graphene oxide an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 23 شماره
صفحات -
تاریخ انتشار 2014